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A numerical bifurcation study in plane Couette flow is performed by computing
successive finite-amplitude equilibrium states, solutions of the Navier–Stokes equa-
tions. Plane Couette flow being linearly stable for all Reynolds numbers, first two-
dimensional equilibrium states are computed by extending nonlinear travelling waves
in plane Poiseuille flow through the Poiseuille–Couette flow family to the plane
Couette flow limit. The resulting nonlinear states are stationary with a spatially
localized structure; they are subject to two-dimensional and three-dimensional
secondary disturbances. Three-dimensional disturbances dominate the dynamics and
three-dimensional stationary equilibrium states bifurcating at criticality on the two-
dimensional equilibrium surface are computed. These nonlinear states, periodic in the
spanwise direction and spatially localized in the streamwise direction, are computed for
Reynolds numbers (based on half the velocity difference between the walls and channel
half-width) close to 1000. While a possible relationship between the computed
solutions and experimentally observed coherent structures in turbulent plane Couette
flow has to be assessed, the present findings reinforce the idea that subcritical transition
may be related to the existence of finite-amplitude states which are (unstable) fixed
points in a dynamical systems formulation of the Navier–Stokes system.

1. Introduction

While linear stability analyses are capable of predicting the onset of transition from
a laminar to a turbulent flow state in many fluid systems, they fail when applied to
shear flows with a subcritical transition behaviour. The linear stage of transition is
bypassed for example in plane Poiseuille flow where transition has been observed for
Reynolds numbers much lower than the value for linear instability. Concerning
subcritical transition in shear flows, plane Couette flow may be considered as a kind
of prototype. Indeed plane Couette flow, that is the flow in a channel induced by the
relative motion of two infinite parallel walls, is known to be linearly stable for all
Reynolds numbers, as shown by Romanov (1973) who analysed the spectrum of the
linearized Navier–Stokes operator. Hence, despite its simple analytical expression,
plane Couette flow is a challenging fluid system for transition studies.

Since the pioneering experimental investigation of Reichardt (1956) until quite
recently only few experimental studies of transition in plane Couette flow seemed to be
available, mainly due to experimental difficulties. Reichardt (1956) reported turbulent
plane Couette flow for Reynolds numbers, expressed in terms of channel half-width
and half the velocity difference between the walls, of 750. More recently, introducing
wall roughness, Aydin & Leutheusser (1991) determined a critical Reynolds number of
300. Numerical simulations of turbulent plane Couette flow have been performed for
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instance by Andersson, Bech & Kristoffersen (1992) who provide turbulent statistics
for Reynolds numbers of about 1300. The turbulent structure in plane Couette flow
using both numerical and experimental data has been investigated recently by Bech et
al. (1995). Concentrating on low-Reynolds-number regions, flow visualization
experimental results have been reported by Tillmark & Alfredsson (1992). These
authors located the lowest Reynolds number for which turbulence can be sustained at
approximately 360. Using finite-amplitude perturbations by a transverse jet flow
injection into the laminar flow Daviaud, Hegseth & Berge! (1992) determined the
minimum Reynolds number for subcritical transition at 370. Measurements of critical
amplitudes for finite-amplitude perturbations have led to a critical Reynolds number
of 325 (Dauchot & Daviaud 1995a). The direct numerical simulation of turbulent
spots for a Reynolds number of 375 performed by Lundbladh & Johansson (1991)
are in general agreement with these experimental findings.

Hence there is numerical (cf. also Orszag & Kells 1980) and experimental evidence
that transition driven by finite-amplitude perturbations in plane Couette flow prevails
for low Reynolds numbers. However, the transition process in plane Couette flow is far
from being understood. Plane Couette flow being stable for infinitesimal disturbances,
a bifurcation analysis from primary to subsequent instabilities fails. Investigating the
linear and weakly nonlinear stability of the Poiseuille–Couette flow family para-
meterized by the wall velocity, Cowley & Smith (1985) showed that weakly nonlinear
solutions bifurcate from infinity for wall velocities above a cut-off value. The
possibility of transient energy growth for subcritical shear flows including plane
Couette flow has been advanced by Reddy & Henningson (1993). Linear transient
amplification is analysed in the mathematical context of non-normal operators, and
this theory is capable of providing bounds for threshold amplitudes (cf. Kreiss,
Lundbladh & Henningson 1994).

While linear transient energy growth can possibly trigger nonlinearities leading to
transition (cf. Baggett, Driscoll & Trefethen 1995) the question of the existence and
basin of attraction of nonlinear states is certainly intimately related to transition (cf.
Waleffe 1995). The search for equilibrium states with increasing spatial and}or
temporal complexity (Saffman 1983) has been undertaken for instance for the pressure-
driven plane Poiseuille channel flow. Since the numerical investigations of Zahn et al.
(1974) and Herbert (1977) it is now well established that two-dimensional steady waves
in plane Poiseuille flow exist for Reynolds numbers of 2900, which is about half the
value for linear instability (R

c
E 5772). Computations of those nonlinear states as well

as secondary stability results have been reported by Pugh & Saffman (1988) and
Soibelman & Meiron (1991). Three-dimensional finite-amplitude waves bifurcating
from the two-dimensional equilibrium surface have been computed by Ehrenstein &
Koch (1991) for Reynolds numbers of 1000, close to measured transitional values.

Those numerical bifurcation studies cannot be applied straightforwardly to plane
Couette flow due to the absence of a primary (linear) instability. To circumvent this
difficulty Lerner & Knobloch (1988) introduced a small defect in an (inviscid) two-
dimensional plane Couette flow leading to linear instability. This approach has been
generalized by Dubrulle & Zahn (1991) who added viscous effects. Instead of
producing a more or less artificial linear instability an alternative procedure is to use
a continuation strategy starting from known nonlinear states for a flow configuration
somehow connected to plane Couette flow. Extending finite-amplitude solutions for a
circular Couette system between co-rotating cylinders with a narrow gap to the case
with zero average rotation rate Nagata (1990) succeeded in computing three-
dimensional nonlinear states for Reynolds numbers close to 125. Bifurcation sequences
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in a Be!nard–Couette problem have been produced by Clever & Busse (1992) leading
to plane Couette flow as limiting case (for a zero Rayleigh number).

An alternative approach proposed by Milinazzo & Saffman (1985) is to connect, by
continuation in the wall velocity, finite-amplitude states in plane Poiseuille flow to the
zero-pressure-gradient plane Couette flow limit. In a previous work (Cherhabili &
Ehrenstein 1995) we reconsidered this idea focusing on the question of existence of
two-dimensional finite-amplitude states in plane Couette flow, a question that has
given rise to some controversy in the past. The most striking result is that the nonlinear
travelling waves in plane Poiseuille flow evolve into solitary-like stationary states for
plane Couette flow. The two-dimensional states reported in Cherhabili & Ehrenstein
(1995) are only a first stage of the description of the nonlinear process. Indeed those
states are unstable to secondary disturbances leading to subsequent bifurcations
possibly related to the transition process. Analogous bifurcation analyses have been
performed for plane Poiseuille flow (Pugh & Saffman 1988; Soibelman & Meiron 1991;
Ehrenstein & Koch 1991) or for the Blasius boundary-layer flow (Koch 1992;
Ehrenstein & Koch 1995).

The present paper is organized as follows. Section 2 contains the governing
equations and the solution procedure. In §3 we summarize the results concerning the
two-dimensional equilibrium states reported in Cherhabili & Ehrenstein (1995).
Section 4 is devoted to the stability analysis of these nonlinear states with respect to
two-dimensional as well as three-dimensional disturbances. Section 5 focuses on the
structure and the existence in the parameter space of three-dimensional equilibrium
solutions emanating from the two-dimensional equilibrium surface. Some conclusions
are drawn in §6 with a brief discussion concerning a possible connection between the
computed nonlinear states and recent experimental observations.

2. Governing equations and method of solution

We consider an incompressible viscous fluid of viscosity µ* and constant density ρ*
between two parallel plates located at y*¯ h* and y*¯®h*. The walls are in an
uniform parallel motion with wall velocities V* and ®V* respectively. Introducing a
pressure gradient P*, uniform laminar Poiseuille–Couette flow is defined by the
velocity component in the streamwise x*-direction

U*(y*)¯
®1

2µ*
P*h*#01®

y*#

h*#
1V*

h*
y*. (2.1)

The quantities are non-dimensionalized using the channel half-width h* and a reference
velocity U* such that in dimensionless form the laminar profile is

U(y, η)¯ (1®η) (1®y#)ηy. (2.2)

For η¯ 0 one recovers the parabolic laminar plane Poiseuille flow profile whereas
η¯ 1 corresponds to the linear plane Couette flow profile. The Reynolds number is
Re¯ ρ*U*h*}µ* and the laminar dimensionless pressure gradient P(η)¯
®2(1®η)}Re vanishes for the plane Couette flow limit η¯ 1 (the reference velocity
U* is then equal to half the velocity difference between the walls V*). Perturbing the
laminar flow we may split the total velocity �

tot
into two parts

�
tot

¯U(y, η) iε�, (2.3)

with ε�¯ ε(u, �,w) the perturbation velocities in the streamwise x-direction, the normal
y-direction and the spanwise z-direction respectively. The conveniently chosen
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perturbation amplitude ε will be fixed by a normalization condition to be specified
later. Introducing the disturbance vorticity ω¯ (ξ,ω, ζ )¯¡¬� the system can be
written in terms of the wall-normal vorticity ω¯ ¥u}¥z®¥w}¥x and the wall-normal
velocity � as independent variables, the flow geometry being homogeneous in the x-
direction and z-direction. In terms of the independent variables the Navier–Stokes
system has the form (Ehrenstein & Koch 1991)

¥
¥t

~ #�¯®U
¥
¥x

~ #�
¥ #U

¥y#

¥�
¥x


1

Re
~ %�

®ε( ¥
¥x

[(�[¡ ) ζ®(ω[¡ )w]®
¥
¥z

[(�[¡ ) ξ®(ω[¡ ) u]*, (2.4a)

¥
¥t

ω¯®Υ
¥ω
¥x

®
¥U
¥y

¥�
¥z


1

Re
~ #ω®ε[(�[¡)ω®(ω[¡ ) �], (2.4b)

together with the boundary conditions

�(y¯³1)¯
¥�
¥y

(y¯³1)¯ 0, (2.4c)

ω(y¯³1)¯ 0. (2.4d )

In system (2.4) we make use of the continuity equation to get the u- and w-components
of the velocity

∆
"
u¯

¥ω
¥z

®
¥�

¥x ¥y
, ∆

"
w¯®

¥ω
¥x

®
¥�

¥z ¥y
, (2.5)

with ∆
"
¯ ¥ #}¥x#¥ #}¥z#.

The flow geometry being parallel one may assume the solution to be periodic in the
streamwise and spanwise directions and the Fourier expansion of the independent
variables �, ω is

(�(x, y, z, t)

ω(x, y, z, t)*¯ 3
+¢

n=−¢
3
+¢

m=−¢
(�W nm

(y, t)

ωW
nm

(y, t)* einαx+imβz. (2.6)

Substituting (2.6) into (2.4) using (2.5) together with the definition of the vorticity
vector one gets a system of nonlinear modal equations for the Fourier modes �W

nm
,ωW

nm

(Ehrenstein & Koch 1991). Reality of the solution requires

�W
−n,−m

¯ �W a
n,m

, ωW
−n,−m

¯ωW a
n,m

(where the barred quantities denote the complex conjugate).
Like other investigators (cf. Lundbladh & Johansson 1991) we suppose the

disturbance to be symmetric with respect to the plane z¯ 0, in order to reduce the
computational effort. Counter-rotating streamwise vortices with similar spanwise
symmetries have also been observed during transition in plane Couette flow (cf.
Dauchot & Daviaud 1995b). Taking into account the symmetry of the solution with
respect to zU®z together with reality of the solution the modal equations have to be
solved only for n& 0, m& 0. The system is identically satisfied for n¯m¯ 0 and the
equation for the disturbance mean flow has to be considered. Averaging the x-
momentum equation one gets for the mean flow uW

!,!
(y, t)

¥uW
!,!

¥t
¯

1

Re

d#uW
!,!

dy#

®ε[(�[¡) u]
!,!

(2.7)
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(the index (0, 0) means that one takes the xz-average). Plane Couette flow is defined by
a zero mean pressure gradient and we have used this condition in (2.7). For the
numerical computation the modal expansion (2.6) is truncated at n¯N, m¯M, and
a Chebyshev-collocation method is used to compute the Fourier modes. Each Fourier
component is evaluated at K1 collocation points

y
j
¯ cos ( jπ}K ), j¯ 0, 1,… ,K, (2.8)

and the derivatives are given by the collocation matrix method (cf. Canuto et al. 1987).
The purpose of the present work is to compute nonlinear equilibrium states of

travelling-wave type which are stationary in a frame of reference moving with the
(unknown) wave speed c in the x-direction (steady-state solutions corresponding to
c3 0). Replacing

¥
¥t

3®c
¥
¥x

in (2.4), (2.7) one readily gets the time-independent set of equations in the
corresponding frame of reference. Introducing a stream function ψ by letting

®
¥ψ
¥x

¯ � and
¥ψ
¥y

¯ u,

a two-dimensional version of the Navier–Stokes system (2.4) can easily be derived in
terms of the Fourier expansion of ψ with

®iαnψW
n!

¯ �W
n!

(�W
nm

3 0, m1 0; ω¯ ξ¯w3 0).

In order to fix the amplitude ε and the phase we use a (quite arbitrary) local
normalization condition suitable for both two- and three-dimensional solutions:

ψW
"!

(0)
dψW

"!
(0)

dy
¯ 1. (2.9)

Satisfying the modal equations at each collocation point (except the wall boundaries
y¯³1) and adding (2.9) the nonlinear travelling waves are determined by solving a
large system of nonlinear algebraic equations:

F(λ,u)¯ 0. (2.10)

The solution vector u contains the flow quantities as well as the wave speed c and the
amplitude ε, and λ denotes the parameter vector (α,β,Re). The system (2.10) is solved
by Newton–Raphson iteration in conjunction with Keller’s pseudo-arclength
continuation procedure (Keller 1977) in order to avoid the singularities of ordinary
parameter continuation at limit points of the solution curve.

3. Two-dimensional nonlinear equilibrium states in plane Couette flow

In this section we summarize results previously published (cf. Cherhabili &
Ehrenstein 1995), necessary for the understanding of the subsequent analyses. Due to
the lack of primary instability the only way to recover nonlinear states in plane Couette
flow is to extend known nonlinear disturbances for a flow geometry somehow
connected to plane Couette flow. Here we consider the Poiseuille–Couette flow family,
and we apply a continuation procedure to connect nonlinear travelling waves for the
pressure-driven plane Poiseuille flow to the plane Couette flow limit. This idea has
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F 1. Cuts through the two-dimensional equilibrium surface for plane Couette flow in the
amplitude ε and Reynolds number Re plane for : —, N¯ 15, α¯ 0.17; [[[, N¯ 25, α¯ 0.10 (K¯ 28).

previously been advanced by Milinazzo & Saffman (1985) and we first focus on the
existence of two-dimensional finite-amplitude states. The nonlinear travelling waves
(with η¯ 0 in (2.2)) for plane Poiseuille flow bifurcate from the laminar state with a
critical propagation speed c determined by linear stability results. The equilibrium
surface of this family of non-uniform Poiseuille solutions has been explored in the past
(cf. Herbert 1977; Pugh & Saffman 1988).

Increasing progressively the parameter η in (2.2) a thorough exploration of the
equilibrium surface in the Poiseuille–Couette parameter space (parameterized by the
streamwise wavenumber α and the Reynolds number Re) finally led to the discovery of
two-dimensional finite-amplitude states for plane Couette flow with η¯ 1 (cf.
Cherhabili & Ehrenstein 1995). Surprisingly the nonlinear travelling waves (with c1 0)
for plane Poiseuille flow evolve into stationary (c¯ 0) solitary-like equilibrium
states for plane Couette flow. This gives some explanation of why previous attempts
to compute two-dimensional finite-amplitude states in plane Couette flow failed.

In what follows the parameter η in (2.2) is that for the plane Couette flow limit
(η3 1) and c3 0, the solutions being stationary. A projection of the equilibrium surface
on the (ε,Re)-plane is shown in figure 1, for two Fourier truncations N¯ 15, 25, the
wavenumbers being α¯ 0.17 and 0.10 respectively. For N¯ 25 only the portion of the
curve close to the nose has been computed, the limit point being located at ReE 1500
(which corresponds approximately to the critical Reynolds number for the nonlinear
states reported in Cherhabili & Ehrenstein 1995). The streamlines of the corresponding
solutions on the upper branches at Re¯ 2200 for both the Fourier truncations are
shown in figure 2(a, b). While the periodic boxes (from x¯ 0 and x¯ 2π}α) have
different lengths the depicted non-zero solution structure is almost identical for both
the Fourier truncations. To capture these solutions the periodic box with length λ

x
¯

2π}α has to be large enough for the solution to be independent of the (periodic)
boundary conditions. Also the convergence of these states has to be analysed in terms
of Fourier transform rather than Fourier expansion. Interpreting the truncated
Fourier expansion as a discrete Fourier transform (in x) the following relationship
between the Fourier transform φ of the disturbance and the (normalized) Fourier
modes �

n
(y) holds :

φ(αn, y)¯ (2π}α) ε�
n
(y), 0% n%N. (3.1)
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F 2. Streamlines of the spatially localized two-dimensional disturbance for plane Couette
flow at Re¯ 2200: (a) N¯ 15; (b) N¯ 25 (K¯ 28).
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Hence the ratio ε}α is more appropriate to characterize the solution than the
amplitude ε alone and, comparing the curves of figure 1 at the nose for both the N-
values, ε}α is close to 0.25. The Fourier transform of a localized structure being zero
outside a closed interval, the wavenumber α

N
depends on the Fourier truncation N

through α
N

N¯ constant. Fully converged spatially localized nonlinear states are
ultimately obtained for decreasing wavenumber α with increasing Fourier truncation
N, which can be interpreted as a homoclinic bifurcation of a limit-cycle solution in a
phase-space formulation of the flow (cf. Pumir, Manneville & Pomeau 1983). Figure
3 depicts the integral quantity

E
N
(α

N
n)¯&"

−"

r�
n
(y)r#dy, 0% n%N, (3.2)

for different values of N with α
N

NE 2.5 (Re¯ 2200). The Fourier transforms for the
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F 4. Perspective view over one wavelength in x and across the channel y of the streamwise
component εu of the two-dimensional nonlinear disturbance in plane Couette flow, at Re¯ 2200,
with N¯ 25, α¯ 0.11 (K¯ 28).

three truncations N¯ 15, 23, 25 almost coincide, hence N¯ 15 should provide fairly
converged solutions. Finally figure 4 depicts the structure of the streamwise component
of the nonlinear equilibrium state. This solution at Re¯ 2200 (located on the upper
branch of the corresponding cut through the equilibrium surface) has been computed
with a Fourier truncation N¯ 25 and with 29 collocation points (K¯ 28 in (2.8)). The
spatially localized state is symmetric with respect to the centre of the structure. The
amplitude of the solution increases when approaching the walls at y¯³1 (before
being zero due to the no-slip condition for the disturbance). The y¯ constant cuts
consist of two-hump profiles at mid-channel and three-hump profiles close to the walls.

As for other shear flows (cf. Herbert 1988) secondary instabilities are expected to
play an important role in the transition process. Therefore the next step will be to
analyse the stability of the two-dimensional states with respect to secondary
disturbances.

4. Stability of the two-dimensional equilibrium states

The Navier–Stokes system (2.4) can formally be written as a (infinite-dimensional)
dynamical system

¥
¥t

φ¯L(U,Re)φ.,(φ) (4.1)

for φ¯ (�,ω). Here L(U,Re) stands for the linear operator depending on the laminar
plane Couette flow profile U(y) and the Reynolds number Re, the nonlinear advection
terms are written as .,(φ). (Here we implicitly assume that the operator ~ # on the
left-hand side of (2.4a) has been inverted.) The nonlinear time-independent solutions
discussed in the previous section are equilibrium states of (4.1), that is

L(U,Re)φ
#D

.,(φ
#D

)¯ 0, with φ
#D

¯ (�
#D

, 0).

Superimposing a perturbation
φ
#D

τψeσt

one obtains by linearizing the right-hand side of (4.1)

σψ¯)(U,Re,φ
#D

)ψ, (4.2a)
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where *(U,Re,φ
#D

)ψ¯L(U,Re)ψ
¥
¥τ

(.,(φ
#D

τψ))rτ=!
. (4.2b)

The two-dimensional equilibrium state is given as a Fourier expansion

�
#D

(x, y)¯ 3
N

n=−N

�W
n
(y) einαx

(the modes �W
n
(y) being discretized using Chebyshev-collocation). Hence by Floquet

theory (cf. Herbert 1988) and introducing a spanwise wavenumber β we are seeking a
(three-dimensional) secondary eigensolution ψ of the form

ψ¯ (�ω*¯

1

2

3

4

3
N

n=−N

�W
n"

(y) einαx

3
N

n=−N

ωW
n"

(y) einαx

5

6

7

8

eiβz. (4.3)

The operator in (4.2), the problem once discretized, is identical to the Jacobian matrix
of the nonlinear system (2.10) evaluated at the two-dimensional nonlinear state. Hence
the stability is analysed solving a large matrix-eigenvalue problem with eigenvalue σ,
the two-dimensional nonlinear state being unstable if the real part Re (σ)" 0. Two-
dimensional perturbations are such that ω3 0 and β¯ 0 in (4.3).

Note that for a general secondary stability analysis of two-dimensional nonlinear
waves one should multiply (4.3) by a factor eiγx, 0%γ!α (cf. Herbert 1988).
However, for plane Poiseuille flow (Ehrenstein & Koch 1991) or the Blasius boundary
layer (Koch 1992; Ehrenstein & Koch 1995) phase-locked superharmonic disturbances
(with γ3 0) play a major role in the subcritical transition process. In the present case
the two-dimensional (stationary) nonlinear states are localized in the streamwise
direction rather than periodic. Here we focus in our temporal stability analysis on
disturbances using the same periodic box in the streamwise direction as the nonlinear
steady state (which already necessitates considerable computational efforts).

The matrix-eigenvalue problem for two-dimensional disturbances is solved using a
standard eigenvalue routine. Owing to the system size for the secondary three-
dimensional stability analysis we also used Arnoldi-type algorithms together with a
shift-and-invert strategy suitable for the computation of the most unstable part of the
eigenvalue spectrum (cf. Nayar & Ortega 1993).

4.1. Two-dimensional secondary instabilities

Superimposing two-dimensional disturbances on the nonlinear equilibrium states, the
limit points in the Reynolds number (for a fixed streamwise wavenumber α) of the
equilibrium surface (cf. figure 1) are bifurcation points where a real eigenvalue
(corresponding to a secondary two-dimensional eigenmode) crosses zero. Figure 5
depicts stability computations in the vicinity of the limit points for both the
wavenumbers α¯ 0.111 and 0.175. The real parts of the most unstable eigenvalues for
the solutions on the upper and the lower branches of the corresponding cuts through
the equilibrium surface are shown. The most unstable eigenvalues on the upper branch
for α¯ 0.111 are depicted as crosses and at the limit point (at ReE 2150) a second real
eigenvalue (marked as small circles) crosses zero. Both real eigenvalues collide in the
vicinity of the limit point and a complex eigenvalue with increasing non-zero imaginary
part appears along the lower branch of the cut through the equilibrium surface. While



168 A. Cherhabili and U. Ehrenstein

5

4

3

2

1

0

16 18 20 22 24

Re (¬10–2)

R
e

(σ
) (
¬

10
2 )

F 5. Highest two-dimensional secondary amplification rates Re(σ) as a function of Re, N¯ 15
(K¯ 28). Computations for α¯ 0.111: , Im (σ)¯ 0, (upper branch) ; D, Im(σ)¯ 0; G, Im(σ)1 0
(lower branch). Computations for α¯ 0.175: n, Im(σ)¯ 0 (upper branch) ; C, Im(σ)1 0 (lower
branch).

for the wavenumber α¯ 0.111 the real eigenvalues collide in the unstable region
Re(σ)" 0, the collision occurs very close to the neutral line Re(σ)¯ 0 for a fixed
wavenumber α¯ 0.175 (the unstable real eigenvalues on the upper branch are depicted
as stars in figure 5). This can be explained as follows. For the wavenumber α¯ 0.175
the limit point at ReE 1580 is close to the lowest Reynolds number for the existence
of the two-dimensional nonlinear equilibrium states (computed with Fourier truncation
N¯ 15 and K¯ 28). Hence the limit point is close to a double-limit point in the
Reynolds number Re and the wavenumber α, where the linearized equation (4.2) has
a zero eigenvalue with algebraic multiplicity two and geometric multiplicity one. As
can be shown by local analyses (cf. Guckenheimer & Holmes 1983) those double-zero
bifurcations are responsible for the emergence of complex-conjugate eigenvalues.

Double-zero bifurcations have also been observed on the two-dimensional
equilibrium surface in plane Poiseuille flow (cf. Pugh & Saffman 1988; Soibelman &
Meiron 1991). Introducing in addition to the Reynolds number a second parameter
which parameterizes the plane Poiseuille flow problem relative to a constant-flux
formulation or a constant-pressure-gradient formulation Barkley (1990) interpreted
the occurrence of the complex eigenvalue (a Hopf bifurcation) in terms of dynamical
systems theory. In the present plane Couette flow case, the second parameter is the
wavenumber α and the collision between the real eigenvalues at the nose of the
equilibrium surface can be interpreted as a degenerate Hopf bifurcation. Indeed for
wavenumbers in the vicinity of the critical value α

c
E 0.175 (with N¯ 15) the real

eigenvalues always collide in the unstable region Re(σ)" 0 (in figure 5 we have only
shown the results for a wavenumber α!α

c
).

In summary the stability computations for two-dimensional secondary perturbations
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F 6. Highest three-dimensional secondary amplification rates MaxRe(σ) as a function of
spanwise wavenumber β. D, Mode with Im(σ)¯ 0, Re¯ 2200, N¯ 13 (α¯ 0.132) ; n, Mode with
Im(σ)¯ 0, Re¯ 2200, N¯ 15 (α¯ 0.111) ; ¬, Mode with Im(σ)¯ 0, Re¯ 4000, N¯ 13 (α¯ 0.132).

show that (for a fixed wavenumber α) the upper branches of the two-dimensional
equilibrium surfaces are unstable with respect to steady (Im(σ)¯ 0) secondary two-
dimensional instabilities whereas the lower branches are unstable to oscillatory
disturbances. In plane Poiseuille flow (Soibelman & Meiron 1991) oscillatory two-
dimensional instabilities have been observed on the upper branches of the two-
dimensional equilibrium surface rather than the lower branches. Inspecting figure 1 the
lower branch for the Reynolds number region Re! 4500 corresponds in fact to the
upper branch with almost constant amplitude ε for higher Reynolds numbers. The
branches cross each other in the projection on the (ε,Re)-plane at ReE 4600.

4.2. Three-dimensional secondary instability

The dynamics during transition in shear flows is certainly dominated by three-
dimensional secondary instabilities. Taking into account three-dimensional perturb-
ations (4.3) a new parameter appears via the spanwise wavenumber β. Linearizing the
Navier–Stokes equations at two-dimensional equilibrium states located on the lower
branch of the equilibrium surface, highest amplification rates Re(σ) for three-
dimensional perturbations as a function of β are depicted in figure 6, for fixed Reynolds
numbers Re¯ 2200 and 4000 (with wavenumber α¯ 0.132). A streamwise Fourier
truncation of N¯ 13 has been used to compute the two-dimensional states (with 29
Chebyshev polynomials in the wall-normal direction) leading to a matrix eigenvalue
problem of almost 2200 real equations. The most unstable eigenvalues shown in figure
6 are real. For Re¯ 2200 the maximum amplification is reached at βE 5 and Re(σ)
decreases for increasing β before crossing the line Re(σ)¯ 0 at β

c
E 23, defining a cut-

off spanwise wavelength λ
z
¯ 2π}β

c
. The behaviour is similar for the computations

at Re¯ 4000 (cf. figure 6), the critical spanwise wavenumber now being located at
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F 7. Principal part of the three-dimensional secondary eigenvalue spectrum for the solution on
the two-dimensional equilibrium surface at Re¯ 2200, with α¯ 0.132, N¯ 13 (K¯ 28). (a) β¯ 3.5;
(b) β¯ 20.

β
c
E 33. The truncation N¯ 13 is a lower limit for the two-dimensional solutions to

be reasonably converged (cf. Cherhabili & Ehrenstein 1995) and we performed some
stability computations with N¯ 15 (at Re¯ 2200 with α¯ 0.11) marked as stars in
figure 6. Beside a small shift in the amplification rate the results fit reasonably well with
the results for the lower truncation N¯ 13. Figure 7(a, b) depicts the principal part of
the stability spectrum (for the two-dimensional equilibrium state at Re¯ 2200) for
three-dimensional perturbations for two different spanwise wavenumbers β. While for
β¯ 3.5 complex and real eigenvalues are unstable besides the most unstable real one,
for β¯ 20 only one unstable eigenvalue is left.

Inspecting figure 6, one observes that the highest amplification rates for three-
dimensional perturbations (at βE 5) are almost an order of magnitude higher than the
amplification rates for two-dimensional perturbations depicted in figure 5. Contrary to
plane Poiseuille flow where oscillatory secondary instabilities dominate for large β-
values (cf. Ehrenstein & Koch 1991), for the present plane Couette flow computations
the critical spanwise wavenumbers β

c
are parameters for steady bifurcations to three-

dimensional equilibrium solutions (beside the weak oscillatory instability due to two-
dimensional secondary eigenmodes).
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F 8. Cut through the equilibrium surface in the amplitude ε and Reynolds number Re plane:
[[[, two-dimensional equilibrium state for N¯ 13, α¯ 0.132 (K¯ 28) ; —, bifurcating three-di-
mensional branch for spanwise wavenumber β

c
¯ 23.2406 with M¯ 1 (α¯ 0.132, N¯ 13) ; ¬, three-

dimensional solutions for β
c
¯ 23.2406 with M¯ 2 (α¯ 0.132, N¯ 13). The insert shows a cut

through the equilibrium surface in the (ε,β)-plane, at Re¯ 2250, for β in the vicinity of β
c
: —,

M¯ 1, ¬, M¯ 2.

5. Three-dimensional nonlinear equilibrium states

Starting with the neutrally stable secondary eigensolutions on the two-dimensional
nonlinear equilibrium surface, bifurcating nonlinear three-dimensional equilibrium
states can be computed solving the complete three-dimensional stationary Navier–
Stokes equations following the solution procedure outlined in §2. We use the spanwise
symmetry assumption hence the three-dimensional branches emerge as pitchfork
bifurcations similar to the plane Poiseuille flow analysis (Ehrenstein & Koch 1991;
Ehrenstein 1994). To capture the solution branches it was necessary to compute the
critical spanwise wavenumbers β

c
with a high accuracy in order to isolate the

corresponding eigensolution necessary for the branch capturing procedure (cf. Keller
1977). Locating the critical spanwise wavenumber at β

c
¯ 23.2406 (cf. figure 6) for the

equilibrium state at Re¯ 2200 (with N¯ 13 and α¯ 0.132) the three-dimensional
equilibrium solutions are shown as the solid line on figure 8. The cut through the two-
dimensional equilibrium surface is represented as the dashed line and the family of
three-dimensional solutions connects the lower and the upper branch. The solutions
corresponding to the solid line have been computed with the spanwise Fourier
truncation M¯ 1 in (2.6) and some solutions with M¯ 2 are also shown marked as
crosses in the (ε,Re)-plane. The results for both the truncations coincide, at least for
that small spanwise cut-off wavelength λ

z
¯ 2π}β

c
. Starting from the solution marked

as an encircled cross, the insert of figure 8 shows some three-dimensional equilibrium
states in the (ε,β)-plane in the vicinity of β

c
(for a fixed Reynolds number Re¯ 2250).

While the solutions for both the truncations M¯ 1, M¯ 2 coincide at β
c
, they diverge

for decreasing β. The nonlinear system with N¯ 13 and M¯ 2 (K¯ 28) consists of
almost 3650 real equations and this is at the very limit of the capacity of our
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F 9. Lines of constant streamwise vorticity for the three-dimensional equilibrium state marked
C on figure 8, at Re¯ 2243 (α¯ 0.132, β¯ 23.2406). (a) Lines in the plane z¯ 1. (b) Lines in the
plane x¯ 14.5, over four wavelengths in z.

computational facilities. (The computations have been performed on the IBM}SP2 of
the CNUSC, France, as well as on a 128 Mbyte workstation digital alphastation 200
4}166. One iteration in the Newton–Raphson solution procedure necessitates about 70
minutes CPU on the workstation, convergence being achieved within five iterations,
except near limit points where up to eight iterations are necessary.)

The spatial structure of the three-dimensional equilibrium state is shown in figures
9 and 10 (the corresponding solution is marked as the encircled cross in figure 8). In
figure 9 the streamwise vorticity is depicted: the isolines in the (x, y)-plane (for fixed
z¯ 1) are shown in figure 9(a) whereas figure 9(b) depicts isolines in the (y, z)-plane.
The x¯ constant cut shown in figure 9(b) has been performed at x¯ 14.5, close to the
centre of the non-zero structure where the vorticity is maximal. Whereas the solution
is localized in the streamwise direction it exhibits pairs of counter-rotating patterns
near the walls in the (y, z)-plane. The non-zero solution structure in figure 9(a) extends
from xE 6 to 23 inside the streamwise-periodic box (from x¯ 0 to x¯ 2π}αE 48).
Hence the streamwise width of the solution is about eight times the channel height.
The normal vorticity ω is depicted in figure 10. Figure 10(a) shows the isolines in the
(x, y) plane (for z¯ 1). The counter-rotating structure at mid-channel y¯ 0 (with a
finite width in the streamwise direction) is depicted in figure 10(b).

It would be impossible to perform an exhaustive exploration of the three-
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F 10. Lines of constant normal vorticity, same solution as figure 9. (a) Lines in the plane
z¯ 1. (b) Lines in the plane y¯ 0, over two wavelengths in z.

dimensional equilibrium surface. Therefore, we have to focus on a strategy in order to
reach Reynolds numbers below the limit point of the two-dimensional equilibrium
surface. In plane Poiseuille flow (Ehrenstein & Koch 1991) or in the Blasius boundary-
layer flow (Ehrenstein & Koch 1995) three-dimensional equilibrium states containing
only even spanwise Fourier modes appeared to be of particular importance for a
subcritical bifurcation analysis. Performing a stability analysis truncating at M¯ 2 in
(2.6), the first spanwise harmonic (i.e. m¯ 2) is neutrally stable at β

c
}2 where β

c
is the

critical spanwise wavenumber for the fundamental mode m¯ 1. For instance for the
stability results (at Re¯ 2200) depicted in figure 6 the branch containing only even
spanwise Fourier modes bifurcates at approximately β

c
}2E 11.5.

We started at this bifurcation point, marked as a point on the cut through the two-
dimensional equilibrium surface in figure 11, and we decreased the spanwise
wavenumber β in the hope of finding three-dimensional equilibrium solutions in the
lower-Reynolds-number region. In figure 11 some results are depicted in the (ε,Re)-
plane, the different symbols represent three-dimensional solutions for decreasing
spanwise wavenumbers β leading to lower Reynolds numbers. The computations were
very time consuming (in particular it was necessary to use very small parameter
variations in the continuation procedure) and the last point reached, marked as an
encircled cross, is located at ReE 1100. For this Reynolds number region close to
1000, almost eight iterations were necessary for convergence with vanishing parameter
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F 12. Plane Couette flow spanwise-averaged streamwise velocity profiles for the solution at
Re¯ 1100, with β¯ 7.6, α¯ 0.132, N¯ 13, M¯ 2 (K¯ 28), within the perturbed region in x. The
intersection of the profiles with the abscissa corresponds to the x-location of the respective profile,
with ∆u¯∆x. The solution is marked C on figure 11.

variations. While this last point does not represent the overall limit point of the
equilibrium surface for three-dimensional solutions it is below the Reynolds number
region of the two-dimensional equilibrium surface. One may hypothesize that a higher
resolution is necessary to extend the equilibrium surface. In particular the streamwise
truncation of N¯ 13 (with α¯ 0.132) is already a lower limit for reasonably converged
two-dimensional solutions (Cherhabili & Ehrenstein 1995). We again emphasize that
the solutions have been computed solving system (2.10) with about 3650 nonlinear
equations and it would hardly be possible to increase the spatial resolution.

In figure 12 profiles of the spanwise-averaged streamwise velocity component are
shown, the corresponding three-dimensional solution at Re¯ 1100 is marked as the
encircled cross in figure 11. The profile at xE 15 exhibits the typical S-shaped structure
of spatially filtered profiles in transitional or turbulent plane Couette flow (Lundbladh
& Johansson 1991). On both sides of the central S-shaped profile the velocity profiles,
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which are symmetric with respect to the centre located at xE 15 and y¯ 0, evolve into
the linear laminar Couette profile. This again illustrates the presence of a spatially
localized perturbed state.

6. Conclusions

A numerical bifurcation study for plane Couette flow has been performed by
computing successive equilibrium states, solutions of the Navier–Stokes equations. To
circumvent the lack of critical parameter values in plane Couette flow, first nonlinear
states have been computed which are connected parameterically to plane Poiseuille
flow through the Poiseuille–Couette flow family. This procedure led to the discovery
of two-dimensional stationary nonlinear states in plane Couette flow spatially localized
in the streamwise direction. These new solutions are subject to secondary instabilities
with respect to two-dimensional and three-dimensional disturbances. As expected and
similar to other shear flows three-dimensional disturbances dominate in the
neighbourhood of the two-dimensional equilibrium surface. The most strongly
growing disturbances have eigenvalues with zero imaginary part and cut-off spanwise
wavelengths have been computed for the emergence of three-dimensional stationary
equilibrium states. These solutions are periodic in the spanwise direction and spatially
localized in the streamwise direction. The complex spatial structure of these solutions
necessitates a high resolution and the nonlinear states could be located for Reynolds
numbers close to 1000. Even though secondary bifurcation sequences are similar for
plane Couette flow and plane Poiseuille flow, the localized streamwise structure makes
the nonlinear plane Couette flow states a qualitatively different solution. The present
computations may provide some explanation for the difficulties one encounters in
computing reliable statistics in turbulent plane Couette flow. Indeed Bech et al. (1995)
report that those computations are strongly dependent on the size of the periodic
streamwise box.

Experiments in plane Couette flow revealed the stable coexistence of laminar and
turbulent domains (Tillmark & Alfredsson 1991; Daviaud et al. 1992). Coherent
structures spatially localized in the streamwise direction and with a counter-rotating
structure in the spanwise direction have recently been identified experimentally in plane
Couette flow (Dauchot & Daviaud 1995b). While there are possible connections
between our findings and observed flow structures, we did not succeed in computing
nonlinear states for such low Reynolds numbers as reported in the experiments. One
may hypothesize that by increasing the numerical resolution (beyond the capability of
our computational facilities) one could reach lower Reynolds number regions.

The successive nonlinear states being (stationary) equilibrium solutions, plane
Couette flow is not only a prototype of a shear flow with a subcritical transition
behaviour but also a case study with regard to the interpretation of the Navier–Stokes
system as a dynamical system. The results reported in the present work reinforce the
hypothesis that subcritical transition is related to the existence of nonlinear equilibrium
states which are (in general unstable) fixed points of the Navier–Stokes equations (cf.
Waleffe 1995; Dauchot & Manneville 1997).

Computations of three-dimensional equilibrium states in plane Couette flow have
also been reported by Nagata (1990) as a limit case in a Taylor–Couette system and by
Busse & Clever (1996) for vanishing Rayleigh number in a Be!nard–Couette system.
Unlike our findings the solutions reported by Nagata and Busse & Clever do not
exhibit a localized structure in the streamwise direction. One may hypothesize that
different procedures used to connect flow configurations parameterically to plane
Couette flow may lead to different solution classes.
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